Permainanlogika Matematika. Mengawali pelajaran dengan menyajikan sebuah puzzle atau permainan matematika sederhana dapat memberikan warna yang berbeda dalam proses KBM di kelas. Berikut ini adalah sebuah permasalahan dalam kehidupan sehari-hari yang berkaitan dengan materi matematika dasar. Suatu hari Anto datang ke rumah Pamannya.
Aljabar Geometri, Kombinatorik, Teori bilangan dan sebagainya. Dari proses pembinaan ini akan dipilih sebanyak 4 smpai 6 orang peserta terbaik yang akan mewakili Indonesia dalam peserta. Pada dasarnya, OSN Matematika SMA/MA mencakup materi matematika yang lazim diberikan dalam kurikulum pendidikan dasar dan menengah (di luar materi
Aspekpenilaian pada matematika meliputi : aspek pemahaman konsep, aspek penalaran dan komunikasi dan aspek pemecahan masalah. Latihan Barisan dan Deret Bilangan Latihan Soal Barisan dan Deret Bilangan untuk kelas 9 Persiapan menghadapi Ujian Nasional
Teoribilangan: 1. Sistem bilangan bulat (himpunan bilangan bulat dan sifat-sifat operasinya) 2. Keterbagian (pengertian, sifat-sifat elementer, algoritma pembagian) 3. Faktor persekutuan terbesar dan kelipatan persekutuan terkecil, relatif prima, algoritma Euklid 4. Bilangan prima 5. Teorema dasar aritmatika (faktorisasi prima) 6.
MatematikaSMA; Matematika SMK; Latihan Soal; Misalkan bilangan pecahan $\frac{27}{5}$ dapat dinyatakan sebagai $\frac{27}{5} = A + \frac{1}{B + \frac{1}{C + 1}}$ dengan A, B, dan C bilangan bulat. Post a Comment for "Kumpulan Soal dan Pembahasan Olimpiade Matematika Materi Aljabar" Terima kasih atas komentar yang telah anda berikan
MateriSebelumnya : Materi Olimpiade SMP : Bab 1 Teori Bilangan [Basic] : Bilangan (Part 2) Sebelum melangkah lebih jauh, saya akan mendefinisikan ketebagian, bilangan prima dan bilangan komposit terlebih dahulu. Suatu bilangan bulat disebut membagi (bisa dituliskan sebagai jika ada bilangan bulat lain sehingga.
VdHH. Materi Dasar Olimpiade Matematika SMA, Teori Bilangan Published 23 Maret, 2008 matematika , Tutorial 61 Comments Iklan Baris Jasa Edit Warna Background Pas Foto, ganti pakaian di pas foto ke jas/kemeja. Murah , mulai dari 15 ribu rupiah saja. Minat WhatsApp ke nomer 08 sebelas 8035506 Download soal dan solusi Olimpiade matematika SMA tingkat kabupaten TEORI BILANGAN UJI HABIS DIBAGI a. Suatu bilangan habis dibagi 2^n apabila n digit terakhir dari bilangan tersebut habis dibagi 2^n Contoh 134576 habis dibagi 8 = 2^3, sebab 576 habis dibagi 8 576 8 = 72 4971328 habis dibagi 16 = 2^4 sebab 1328 habis dibagi 16 b. Suatu bilangan habis dibagi 5 apabila digit terakhir dari bilangan tersebut adalah 0 atau 5 Contoh 67585 dan 457830 adalah bilangan-bilangan yang habis dibagi 5. c. Suatu bilangan habis dibagi 3 apabila jumlah digit bilangan tersebut habis dibagi 3. Contoh 356535 habis dibagi 3 sebab 3 + 5 + 6 + 5 + 3 + 5 = 27 dan 27 habis dibagi 3. d. Suatu bilangan habis dibagi 9 apabila jumlah digit bilangan tersebut habis dibagi 9. Contoh 23652 habis dibagi 9 sebab 2 + 3 + 6 + 5 + 2 = 18 dan 18 habis dibagi 9. e. Suatu bilangan habis dibagi 11 apabila selisih antara jumlah digit dari bilangan tersebut pada posisi ganjil dengan jumlah digit dari bilangan tersebut pada posisi genap habis dibagi 11. Contoh 945351 habis dibagi 11 sebab 9 + 5 + 5 – 4 + 3 + 1 = 11 dan 11 habis dibagi 11. Contoh bilangan lain yang habis dibagi 11 adalah 53713 dan 245784. 2. Jika suatu bilangan habis dibagi a dan juga habis dibagi b, maka bilangan tersebut akan habis dibagi ab dengan syarat a dan b relatif prima. Berlaku sebaliknya. Contoh 36 habis dibagi 4 dan 3, maka 36 akan habis dibagi 12. 3. Misalkan N jika dibagi p akan bersisa r. Dalam bentuk persamaan N = pq + r dengan p menyatakan pembagi, q menyatakan hasil bagi dan r menyatakan sisa. Persamaan di atas sering pula ditulis N=r mod p 4. Kuadrat suatu bilangan bulat bulat, habis dibagi 4 atau bersisa 1 jika dibagi 4. maka suatu bilangan bulat yang bersisa 2 atau 3 jika dibagi 4, bukanlah bilangan kuadrat. 5. Angka satuan dari bilangan kuadrat adalah 0, 1, 4, 5, 6, 9. 6. Bilangan pangkat tiga kubik jika dibagi 7 akan bersisa 0, 1 atau 6. 7. Dua bilangan dikatakan prima relatif, jika faktor persekutuan terbesarnya FPB sama dengan 1. Contoh 26 dan 47 adalah prima relatif sebab FPB 26 dan 47 ditulis FPB26,47 = 1
Olimpiade matematika tingkat SMA merupakan ajang yang tidak boleh dianggap remeh. Tentu setiap sekolah harus mempersiapkan materinya secara matang agar bisa memenangkan pertandingannya. Nah, bagi yang masih bingung apa saja materinya, berikut beberapa materi olimpiade matematika SMA yang bisa dipelajari1. Sistem Bilangan RealBilangan real memang tak sesulit yang dibayangkan. Materi bilangan ini berkaitan erat dengan bilangan desimal yang biasanya terdapat koma ,. Simbol yang biasanya digunakan untuk melambangkan bilangan ini yaitu huruf R sehingga tak sulit untuk membedakannya dengan bilangan lain yang bukan termasuk ke dalam bilangan real biasanya disebut dengan bilangan rasional. Nah, bilangan ini pun ada dua jenis yaitu bilangan pecahan dan juga bilangan bulat. Menghitung bilangan real juga tidak sulit karena berkutat dengan pengurangan, penjumlahan, perkalian, dan KetaksamaanKetaksamaan yang paling sering keluar adalah berkaitan dengan AM-GM. AM sendiri merupakan rata-rata aritmatika dan GM adalah rata-rata geometrik. Terdapat dua bagian dari sistem kesamaan ini yaitu ruas kiri yang ditempati langsung oleh AM dan ruas kanan yaitu GM sehingga posisinya tidak dapat materi yang satu ini memang cukup rumit dan terdapat rumus tertentunya. Terdapat bilangan pecahan dan akar kuadrat yang akan membuat pelajar sedikit pusing dalam menghitungnya. Poin yang terpenting ketika menghadapi soal ini yaitu fokus dan kerjakan dengan teliti supaya tidak Induksi MatematikaMendengar kata induksi, pasti yang teringat pada benak pelajar adalah materi sistem penghantar panas pada pelajaran fisika. Namun, hal tersebut tidak sepenuhnya benar karena induksi juga ada pada pelajaran Matematika tingkat SMA. Tentu saja pengertian induksi ini berbeda dengan apa yang dipelajari pada matematika bisa diartikan sebagai metode yang digunakan untuk membuktikan suatu pernyataan yang berhubungan dengan kebenaran pada semua bilangan asli. Untuk membuktikannya terdapat rumus sederhana yang bisa diterapkan oleh pelajar sehingga materi olimpiade matematika SMA ini cukup Prinsip KeterbagianPelajar SMA yang belum pernah mengikuti lomba olimpiade pasti akan merasa asing dengan materi ini karena sejatinya memang tidak diajarkan ketika pembelajaran. Namun, prinsip keterbagian istri sering dijadikan sebagai soal olimpiade sehingga membuat pusing para pelajar. Namun, tak perlu khawatir karena pembimbing akan termasuk ke dalam sifat yang umumnya dimiliki oleh suatu bilangan supaya bilangan tersebut bisa habis ketika dibagi oleh bilangan lain. Arti habis disini adalah ketika bilangannya dibagi, maka hasilnya bukanlah bilangan pecahan melainkan adalah bilangan bulat yang bisa dilihat secara AritmatikaPrinsip dasar yang harus dipegang oleh pelajar dalam memahami materi olimpiade matematika SMA ini sangat mudah sekali dan mampu dijangkau oleh logika. Dimana, semua bilangan bulat yang jumlahnya lebih dari 1 tergolong ke dalam bilangan prima. Prinsip selanjutnya yaitu bilangan tersebut bisa dibentuk dengan perkalian bilangan contohnya adalah angka 2 dan 3 termasuk ke dalam bilangan prima karena habis dibagi dengan bilangan itu sendiri. Nah, untuk angka 4 memang bukan termasuk bilangan prima hasil perkaliannya yaitu 2 x 2 termasuk kumpulan dari bilangan prima. Bagaimana, mudah bukan memahami materi ini?6. Teorema EratosthenesSulit sekali untuk melafalkan nama dari materi ini karena diambil dari istilah ilmiah sehingga orang Indonesia pun akan kesulitan melafalkannya. Teorema ini sering sekali digunakan dalam rangka pembuktian teori suatu bilangan khususnya adalah bilangan prima. Tentu pengertian bilangan ini sudah diketahui oleh para teorema ini berguna untuk mempermudah para ilmuan matematika ketika menguji suatu bilangan yang sembarang. Nantinya bilangan tersebut bisa dikategorikan bilangan komposit atau bilangan prima melalui pengujian dengan rumus yang selama ini telah dikembangkan. Penghitungannya pun tidak Bangun-Bangun Bidang DatarBangun datar merupakan materi olimpiade matematika SMA yang sudah dipelajari sejak zaman sekolah dasar sehingga tak akan menyulitkan bagi calon lomba olimpiade. Materinya yang mudah sekali dipahami dan soalnya yang tidak terlalu rumit bisa dijadikan sebagai poin plus untuk menambah poin ketika bangun datar tersebut pun terdapat ciri-ciri yang harus dipahami. Tentu tak akan sulit untuk memahami cirinya karena bisa dilihat dari bentuk asli bangun datar tersebut. bangun datar yang akan dipelajari tidak jauh dari persegi, segitiga, jajargenjang dan lainnya. Siapapun pasti sudah sangat hafal bentuknya8. Hubungan LingkaranMateri hubungan lingkaran yang akan keluar pada soal olimpiade matematika memang cukup kompleks sehingga harus dipelajari secara intens. Lingkaran sendiri memiliki hubungan dengan banyak pihak seperti garis, titik, segitiga, dan lainnya. Hubungan tersebut harus dipelajari karena biasanya keluar pada Prinsip PencacahanPencacahan memang acap kali masuk ke dalam soal olimpiade. Tak hanya itu saja, soal SBMPTN pun tidak lepas dari materi olimpiade matematika SMA ini sehingga wajib dipelajari. Meskipun sering dianggap sebagai materi yang mudah, nyatanya masih banyak saja pelajar yang salah dalam menjawab yang sering terjadi adalah siswa merasa kesulitan dalam membedakan setiap konsepnya dan tidak paham mana rumus yang seharusnya diterapkan. Oleh sebab itu, perlu dilakukan pendalaman agar tidak salah lagi dalam memahami konsep dan bisa memilih rumus yang tepat. Latihan soal secara terus menerus merupakan olimpiade matematika SMA yang sudah tersaji di atas tentu tidak boleh disepelekan begitu saja ketika akan mengikuti olimpiade. Memahami materi tersebut secara detail merupakan kunci yang harus dipegang teguh agar nantinya bisa mengerjakan soal dengan mudah. Apabila perlu, silahkan cari rumus cepatnya.\
TEORI BILANGAN UJI HABIS DIBAGI a. Suatu bilangan habis dibagi 2^n apabila n digit terakhir dari bilangan tersebut habis dibagi 2^n Contoh 134576 habis dibagi 8 = 2^3, sebab 576 habis dibagi 8 576 8 = 72 4971328 habis dibagi 16 = 2^4 sebab 1328 habis dibagi 16 b. Suatu bilangan habis dibagi 5 apabila digit terakhir dari bilangan tersebut adalah 0 atau 5 Contoh 67585 dan 457830 adalah bilangan-bilangan yang habis dibagi 5. c. Suatu bilangan habis dibagi 3 apabila jumlah digit bilangan tersebut habis dibagi 3. Contoh 356535 habis dibagi 3 sebab 3 + 5 + 6 + 5 + 3 + 5 = 27 dan 27 habis dibagi 3. d. Suatu bilangan habis dibagi 9 apabila jumlah digit bilangan tersebut habis dibagi 9. Contoh 23652 habis dibagi 9 sebab 2 + 3 + 6 + 5 + 2 = 18 dan 18 habis dibagi 9. e. Suatu bilangan habis dibagi 11 apabila selisih antara jumlah digit dari bilangan tersebut pada posisi ganjil dengan jumlah digit dari bilangan tersebut pada posisi genap habis dibagi 11. Contoh 945351 habis dibagi 11 sebab 9 + 5 + 5 – 4 + 3 + 1 = 11 dan 11 habis dibagi 11. Contoh bilangan lain yang habis dibagi 11 adalah 53713 dan 245784. 2. Jika suatu bilangan habis dibagi a dan juga habis dibagi b, maka bilangan tersebut akan habis dibagi ab dengan syarat a dan b relatif prima. Berlaku sebaliknya. Contoh 36 habis dibagi 4 dan 3, maka 36 akan habis dibagi 12. 3. Misalkan N jika dibagi p akan bersisa r. Dalam bentuk persamaan N = pq + r dengan p menyatakan pembagi, q menyatakan hasil bagi dan r menyatakan sisa. Persamaan di atas sering pula ditulis N=r mod p 4. Kuadrat suatu bilangan bulat bulat, habis dibagi 4 atau bersisa 1 jika dibagi 4. maka suatu bilangan bulat yang bersisa 2 atau 3 jika dibagi 4, bukanlah bilangan kuadrat. 5. Angka satuan dari bilangan kuadrat adalah 0, 1, 4, 5, 6, 9. 6. Bilangan pangkat tiga kubik jika dibagi 7 akan bersisa 0, 1 atau 6. 7. Dua bilangan dikatakan prima relatif, jika faktor persekutuan terbesarnya FPB sama dengan 1. Contoh 26 dan 47 adalah prima relatif sebab FPB 26 dan 47 ditulis FPB26,47 = 1
Materi dan contoh soal olimpiade matematika SMAMateri dan contoh soal olimpiade matematika SMAhineni frankyBagi siapapun yang telah memiliki ebook ini, anda diperbolehkan mengcopy, menyebarluaskan dan atau menggandakan, tetapi anda tidak diperkenankan mengubah sebagian atau seluruh isinya tanpa seizin dari penulis.
Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan contoh berikut 234 5 = 46 sisa 4 dan dapat ditulis 234 = 5 x 46 + 4. Secara umum, contoh diatas dapat dinyatakan sebagai berikut Untuk sebarang a dan b bilangan bulat dengan a ≠ 0, maka terdapat q dan r bilangan bulat yang tunggal sedemikian sehingga b dapat dinyatakan sebagai b=axq+r atau b = aq + r dengan 0 r b > 0, maka GCDa,b dapat dicari dengan mengulang algoritma pembagian. a q1b r1 0 r1 b b q2r1 r2 0 r2 r1 r1 q3r2 r3 0 r3 r2 rn 2 qn rn 1 rn 0 rn rn 1 rn 1 qn 1rn 0 Maka, rn, sisa terakhir dari pembagian diatas yang bukan nol merupakan GCDa,b. Contoh Tentukan GCD4840,1512 ? Akibat dari teorema algoritma euclide yaitu untuk setiap GCD maka terdapat bilangan bulat x dan y sedemikian hingga GCDa,b = ax + by. Misalnya pada contoh diatas, akan dicari x dan y sedemikian hingga 8 = 4840x + 1512y. GCD4840,1512 = 8 = 304 – 296 = 304 – 1512 – 304 x 4 = 304 x 5 – 1512 = 4840 – 1512 x 3 x 5 – 1512 = 5 x 4840 – 15 x 1512 – 1512 = 5 x 4840 – 16 x 1512 Jadi x= 5 dan y = -16. Akibat selanjutnya dari teorema euclide yaitu persamaan linear Diophantine. Teorema 2 Diophantine Suatu persamaan linear Diophantine ax + by = c dengan a,b dan c bilangan bulat mempunyai penyelesaian bilangan bulat jika dan hanya jika GCDa,b membagi habis c. Bukti Dari akibat sebelumnya diketahui bahwa untuk setiap GCD maka terdapat bilangan bulat m dan n sedemikian hingga GCDa,b = am + bn. Selanjutnya Karena GCDa,b membagi habis c maka terdapat bilangan k sedemikian hingga c k GCD a, b c k am bn c a km b kn Jadi salah satu penyelesain untuk persamaan linear Diophantine tersebut yaitu x km dan y kn . Terbukti. Diambil sebarang bilangan bulat k, akan ditunjukkan bahwa jika x0 dan y 0 adalah salah satu penyelesaian persamaan linear diophantine ax + by = c, maka x x0 b k GCD a, b y y0 a k GCD a, b juga merupakan penyelesain persamaan linear Diophantine tersebut. Contoh Tentukan penyelesaian umum persamaan Diophantine 754x+221y=13. BILANGAN – BILANGAN KHUSUS Ada beberapa macam macam bilangan khusus. Pada subbab ini hanya akan dibahas mengenai 3 biangan khusus yaitu bilangan prima, bilangan komposit dan bilangan kuadrat. A. Bilangan Prima Bilangan prima adalah bilangan asli hanya mempunyai dua faktor yaitu 1 dan bilangan itu sendiri. Contoh bilangan prima yaitu 2, 3, 5, 7, … B. Bilangan Komposit Bilangan komposit adalah bilangan yang mempunyai lebih dari 2 faktor. Contoh bilangan komposit yaitu 4, 6, 8, 9, 10, ….. C. Bilangan Bulat Kuadrat Suatu bilangan a disebut bilangan bulat kuadrat jika terdapat bilangan bulat b sedemikian hingga b2 = a. Contoh bilangan bulat kuadrat yaitu 1, 4, 9, 16, 25, … Selanjutnya, di bawah adalah teorema yang berkaitan dengan ketiga bilangan diatas. Teorema 3 Teori Erathosthenes Untuk setiap bilangan komposit n ada bilangan prima p sehingga p n dan p kurang dari sama dengan akar n. Atau dapat juga dikatakan jika tidak ada bilangan prima p yang dapat membagi n dengan p kurang dari sama dengan akar n maka n adalah bilangan prima. Sifat dari bilangan kuadrat yaitu 1. angka satuan yang mungkin untuk bilangan kuadrat adalah 0, 1, 4, 5, 6, dan 9. 2. setiap bilangan kuadrat dibagi 4 maka sisanya 0 atau 1. 3. jika p bilangan prima dan p membagi habis n2 maka p2 membagi habis n2. Contoh Tunjukkan bahwa kuadrat sebarang bilangan bulat dapat dituliskan dalam bentuk 4k atau 8k+1. Contoh Matematikawan August DeMorgan menghabiskan seluruh usianya pada tahun 1800an. Pada tahun terakhir dalam masa hidupnya dia mengatakan bahwa “Dulu aku berusia x tahun pada tahun x2.” Tentukan pada tahun berapa ia dilahirkan? soal Olimpiade Matematika tk. Kabupaten Contoh Suatu bilangan bulat p 2 merupakan bilangan prima jika faktornya hanyalah p dan 1. Misalkan M menyatakan perkalian 100 bilangan prima yang pertama. Berapa banyakkah angka 0 di akhir bilangan M? soal Olimpiade Matematika tk. Kabupaten KONGRUENSI Misalkan m adalah suatu bilangan bulat positif. Dua buah bilangan a dan b dikatakan kongruen modulo m jka dan hanya jika m a – b, dan ditulis dengan a b mod m Contoh 23 = 3 mod 5. Teorema 4 Misalkan a, b, c, d, x dan y melambangkan bilangan bulat, maka a. a b mod m , b a mod m dan a b 0 mod m adalah pernyataan pernyataan yang setara. b. Jika a b mod m dan b c mod m maka a c mod m . c. Jika a b mod m dan d membagi habis m maka a b mod d Bukti d. Jika a b mod m dan c d mod m maka ax cy bx dy mod m a. dan ac bd mod m . a b mod m , maka terdapat q sedemikian hingga a – b = qm. Akibatnya a b qm sehingga a b q m . Karena terdapat bilangan bulat q sedemikian hingga b a q m , maka b a mod m . Kemudian karena a b qm 0 , maka a b 0 mod m . Terbukti. Latihan b dan c disediakan sebagai latihan. d. m a – b dan m c – d maka m x a b y c d , atau m ax cy bx dy . Sehingga didapatkan ax cy bx dy mod m . Akibat dari teorema diatas yaitu jika f x adalah suatu fungsi polinom dengan koefisien koefisien bulat dan a b mod m , maka berlaku f a f b mod m . Berikut adalah contoh penggunaan akibat dari teorema 2. Contoh Buktikan bahwa untuk sebarang bilangan asli n, A 2903n 803n 464n 261n habis dibagi 1897. Jawab Misalkan n suatu bilangan asli. Perhatikan bahwa 1897 = 7 x 271. selanjutnya 2903 803 mod 7 dan 464 261mod 7 Begitu pula 2903 464 mod 271 dan 803 261mod 271 , dengan demikian A habis dibagi 7 dan 271. karena GCD7,271 = 1, maka dapat disimpulkan bahwa A habis dibagi 1897. Contoh Buktikan bahwa kuadrat bilangan suatu bilangan bulat berbentuk 0 atau 1 mod 3 Contoh Buktikan bahwa jika 2n+1 dan 3n+1 keduanya bilangan kuadrat murni, maka n habis dibagi 40 FUNGSI BILANGAN BULAT TERBESAR Untuk x biangan real, lambang x menyatakan bilangan bulat terbesar yang lebih kecil atau sama dengan x. jadi x x . Teorema 5 Misalkan x dan y bilangan real, maka diperoleh a. b. x x x 1 Dan x 1 x x, Jika x 0 maka x 1 . 0 x x 1. 1 i x c. Jika m suatu bilangan bulat, maka berlaku x m x m . d. x x adalah bagian pecahan dari x e. x adalah biangan bulat terkecil yang lebih besar atau sama dengan x. f. x 0,5 adalah bilangan bulat yang terdekat pada x. Jika dua bilangan bulat sama dekatnya dengan x maka melambangkan biangan built yang lebih besar dari keduanya. n g. Jika n dan a bilangan bulat positif, adalah bilangan bulat diantara 1, 2, a …, n yang habis dibagi a. Contoh Buktikan bahwa untuk n = 1,2,3,… berlaku n 1 n 2 n 4 n 8 2 4 8 16 n
materi teori bilangan olimpiade matematika sma